Pandas DataFrame loc or Operator

Pandas DataFrame loc or Operator

Pandas is a powerful data manipulation library in Python. It provides data structures and functions needed to manipulate structured data. One of the most commonly used data structures in pandas is the DataFrame. It is a two-dimensional labeled data structure with columns of potentially different types.

In this article, we will focus on the loc operator in pandas DataFrame, and how to use the or operator with it. The loc operator is used for label-based indexing or selecting data from a DataFrame. It can accept a single label, a list of labels, or a boolean array.

1. Basic Usage of loc Operator

The loc operator is used to access a group of rows and columns by labels or a boolean array. Here is a basic example:

import pandas as pd

data = {
    'name': ['pandasdataframe.com', 'example.com', 'test.com'],
    'visits': [100, 200, 300],
    'revenue': [10.0, 20.0, 30.0]
}

df = pd.DataFrame(data)

# Access the row with label 1
print(df.loc[1])

Output:

Pandas DataFrame loc or Operator

2. Using loc with Boolean Array

You can also use a boolean array with the loc operator to select rows. Here is an example:

import pandas as pd

data = {
    'name': ['pandasdataframe.com', 'example.com', 'test.com'],
    'visits': [100, 200, 300],
    'revenue': [10.0, 20.0, 30.0]
}

df = pd.DataFrame(data)

# Select rows where visits is greater than 100
print(df.loc[df['visits'] > 100])

Output:

Pandas DataFrame loc or Operator

3. Using loc to Select Columns

The loc operator can also be used to select columns. Here is an example:

import pandas as pd

data = {
    'name': ['pandasdataframe.com', 'example.com', 'test.com'],
    'visits': [100, 200, 300],
    'revenue': [10.0, 20.0, 30.0]
}

df = pd.DataFrame(data)

# Select the 'name' and 'visits' columns
print(df.loc[:, ['name', 'visits']])

Output:

Pandas DataFrame loc or Operator

4. Using loc to Select Rows and Columns

You can use the loc operator to select both rows and columns at the same time. Here is an example:

import pandas as pd

data = {
    'name': ['pandasdataframe.com', 'example.com', 'test.com'],
    'visits': [100, 200, 300],
    'revenue': [10.0, 20.0, 30.0]
}

df = pd.DataFrame(data)

# Select the 'name' and 'visits' columns for rows where visits is greater than 100
print(df.loc[df['visits'] > 100, ['name', 'visits']])

Output:

Pandas DataFrame loc or Operator

5. Using the or Operator with loc

The or operator can be used with the loc operator to select rows that satisfy either of two conditions. Here is an example:

import pandas as pd

data = {
    'name': ['pandasdataframe.com', 'example.com', 'test.com'],
    'visits': [100, 200, 300],
    'revenue': [10.0, 20.0, 30.0]
}

df = pd.DataFrame(data)

# Select rows where visits is greater than 100 or revenue is greater than 10.0
print(df.loc[(df['visits'] > 100) | (df['revenue'] > 10.0)])

Output:

Pandas DataFrame loc or Operator

6. Using the or Operator with loc to Select Columns

The or operator can also be used with the loc operator to select columns. Here is an example:

import pandas as pd

data = {
    'name': ['pandasdataframe.com', 'example.com', 'test.com'],
    'visits': [100, 200, 300],
    'revenue': [10.0, 20.0, 30.0]
}

df = pd.DataFrame(data)

# Select the 'name' column or the 'visits' column
print(df.loc[:, df.columns.isin(['name', 'visits'])])

Output:

Pandas DataFrame loc or Operator

7. Using the or Operator with loc to Select Rows and Columns

You can use the or operator with the loc operator to select both rows and columns that satisfy either of two conditions. Here is an example:

import pandas as pd

data = {
    'name': ['pandasdataframe.com', 'example.com', 'test.com'],
    'visits': [100, 200, 300],
    'revenue': [10.0, 20.0, 30.0]
}

df = pd.DataFrame(data)

# Select the 'name' and 'visits' columns for rows where visits is greater than 100 or revenue is greater than 10.0
print(df.loc[(df['visits'] > 100) | (df['revenue'] > 10.0), ['name', 'visits']])

Output:

Pandas DataFrame loc or Operator

In conclusion, the loc operator is a powerful tool for selecting data from a pandas DataFrame. When combined with the or operator, it allows for complex data selection based on multiple conditions.